On comparison principles for the periodic Hill's equation

نویسندگان

  • Alberto Cabada
  • José Ángel Cid
چکیده

In this work, we make an exhaustive study of the properties of the Green’s function related to the periodic boundary value problem Lax ≡ x′′ + a(t) x = 0, x(0) = x(T ), x′(0) = x′(T ), with a sign-changing potential a(t). Moreover, we obtain new explicit criteria that ensures that the maximum or anti-maximum principle holds for this equation. The given criteria complement previous results in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green's functions and spectral theory for the Hill's equation

The aim of this paper is to show certain properties of the Green’s functions related to the Hill’s equation coupled with various two point boundary value conditions. We will obtain the expression of the Green’s function of Neumann, Dirichlet, Mixed and anti-periodic problems as a combination of the Green’s function related to periodic ones. As a consequence we will prove suitable results in spe...

متن کامل

Intervals of Electrohydrodynamic Rayleigh-taylor Instability: Effect of a Normal Periodic Field

The intervals of electrohydrodynamic Rayleigh-Taylor instability influenced by a periodic normal field are considered. It is shown that a linear model of the interface is governed by Hill's differential equation. Characteristic values and intervals of stability are discussed. The special case of Mathieu differential equation type is obtained.

متن کامل

The Construction of Jacobi and Periodic Jacobi Matrices With Prescribed Spectra

The spectral properties of Jacobi and periodic Jacobi matrices are analyzed and algorithms for the construction of Jacobi and periodic Jacobi matrices with prescribed spectra are presented. Numerical evidence demonstrates that these algorithms are of practical utility. These algorithms have been used in studies of the periodic Toda lattice, and might also be used in studies of inverse eigenvalu...

متن کامل

A modified homotopy perturbation method to periodic solution of a coupled integrable dispersionless equation

In this paper, a reliable approach is introduced to approximate periodic solutions of a system of coupled integrable dispersionless. The system is firstly, transformed into an ordinary differential equation by wave transformation. The solution of ODE is obtained by the homotopy perturbation method. To show the periodic behavior of the solution, a modification based on the Laplace transforms and...

متن کامل

Explicit multiple singular periodic solutions and singular soliton solutions to KdV equation

 Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2012